
Received 1 June 2023, accepted 11 June 2023, date of publication 26 June 2023, date of current version 29 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289397

Avoiding Shortcut-Learning by Mutual
Information Minimization in Deep
Learning-Based Image Processing
LOUISA FAY 1,2, ERICK COBOS1,3, BIN YANG 2, (Senior Member, IEEE),
SERGIOS GATIDIS 1,3, AND THOMAS KÜSTNER 1, (Member, IEEE)
1Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University
Hospital of Tuebingen, 72076 Tübingen, Germany
2Institute of Signal Processing and System Theory, University of Stuttgart, 70550 Stuttgart, Germany
3Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Corresponding author: Louisa Fay (louisa.fay@med.uni-tuebingen.de)

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 428219130,
in part by DFG through Germany’s Excellence Strategy—EXC 2064/1 under Grant 390727645, in part by the German National Cohort
(GNC) (www.nako.de) through the Federal Ministry of Education and Research (BMBF) under Grant 01ER1301A/B/C and Grant
01ER1511D, in part by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) under Grant U01
AG024904, and in part by the Department of Defense (DOD) ADNI under Award W81XWH-12-2-0012.

ABSTRACT Deep learning models are increasingly being used in detecting patterns and correlations in
medical imaging data such as magnetic resonance imaging. However, conventional methods are incapable
of considering the real underlying causal relationships. In the presence of confounders, spurious correlations
between data, imaging process, content, and output can occur that allow the network to learn shortcuts
instead of the desired causal relationship. This effect is even more prominent in new environments or when
using out-of-distribution data since the learning process is primarily focused on correlations and patterns
within the data. Hence, wrong conclusions or false diagnoses can be obtained from such confounded models.
In this paper, we propose a novel framework, denoted as Mutual Information Minimization Model (MIMM),
that predicts the desired causal outcome while simultaneously reducing the influence of present spurious
correlations. The input imaging data is encoded into a feature vector that is split into two components
to predict the primary task and the presumed spuriously correlated factor separately. We hypothesize that
learned mutual information between both feature vector components can be reduced to achieve indepen-
dence, i.e., confounder-free task prediction. The proposed approach is investigated on five databases: two
non-medical benchmark databases (Morpho-MNIST and Fashion-MNIST) to verify the hypothesis and three
medical databases (German National Cohort, UK Biobank, and ADNI). The results show that our proposed
framework serves as a solution to address the limitations of conventional deep learning models in medical
image analysis. By explicitly considering and minimizing spurious correlations, it learns causal relationships
which result in more accurate and reliable predictions. The novel contributions in this work are: 1) the
separation of features into the prediction of the primary task and the spuriously correlated factor; 2) MIMM
targets the preservation of invariance to counterfactuals, prevents shortcut learning, and enables confounder-
free network training; and 3) the mutual information minimization addresses heterogeneous data cohorts as
usually encountered in the medical domain.
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I. INTRODUCTION
The tremendous development of deep learning (DL) algo-
rithms and their promising results have the potential to
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fundamentally transform clinical workflows in the forth-
coming decades [1], [2]. DL models are already able to
not only reconstruct medical images [3], [4], [5], [6] but
also diagnose diseases [7], [8], [9], [10], suggest treat-
ments [11], [12], [13], [14], or segment different tissues in the
body [15], [16], [17], [18].

In general, the predictions of DL algorithms are based on
the detection of patterns and correlations in given training
data. Trained DL models are evaluated on test data from the
same distribution [19]. As soon as the distribution of test data,
e.g., in real-world scenarios, deviates from the distribution
of data utilized during training, it is likely that the model
will exhibit poor performance since its predictions are based
on learned correlations between the input samples and their
corresponding labels [20], [21]. However, as Fig. 1A shows,
hidden confounding within the training data bears the risk
to generate spurious correlations that reflect biases or selec-
tion effects within the training data [22], [23], [24], [25].
Consequently, the networks may have been trained on these
shortcuts instead of on the intended causal relation [26].
DL models can therefore fail to correctly predict outputs in a
new environment when the spurious correlation changes and
thus, the shortcut deviates from the causal relationship [27],
[28], [29].

Especially in medical imaging, multiple factors such as
scanners, acquisition sites, scan conditions (e.g., patient
positioning, imaging protocol, etc.), and patient compli-
ance, etc. influence the acquisition of medical images like
magnetic resonance imaging (MRI), computed tomography
(CT), or positron emission tomography (PET) [27], [30].
DL models that are aimed to operate on a heterogeneous
or confounded imaging cohort, tend to learn shortcuts based
on spurious correlations instead of task-specific features
[27], [31]. While these confounded networks may perform
reasonably well within the same data distribution (as train-
ing), out-of-distributional generalization and objective image
analysis are impaired [32], [33]. The usage of these meth-
ods within a clinical context could mean that wrong or
overly optimistic predictions are obtained which could be
life-threatening as the real causal relationship is missed
[27], [33]. For example, a hospital has twoMR scanners from
the samemanufacturer. Scanner A is older and produces nois-
ier images compared to Scanner B. While Scanner A scans
mainly healthy patients, Scanner B primarily scans patients
with Alzheimer’s disease (AD). When training a DL model
to predict AD with such data, learning the shortcut created
by the spurious correlation between AD and noise level is
easier than learning the desired but hidden causal relationship
between AD and anatomical features. Thus, an AD patient
scanned on Scanner A will most likely be wrongly catego-
rized as healthy. For the successful application and support
of DL models in clinical workflows, it is essential to enhance
the model’s robustness to be able to make correct predictions
in every environment even if the predictor is trained on an
unbalanced and spuriously correlated dataset.

This paper addresses this challenge by proposing the
Mutual Information Minimization Model (MIMM). The aim
is to train a counterfactual invariant predictor robust to any
changes of known spurious correlations within the train-
ing data. Our framework predicts the task-specific output
(e.g., AD patient) while simultaneously reducing the influ-
ence of spuriously correlated factors (e.g., type of scanner) in
the dataset. The rationale of this work is to split the informa-
tion obtained from the actual task and the confounding, which
allows us to train models that avoid shortcut learning and are
more robust to distribution shifts.

The proposed method is based on a DL architecture, which
comprises two major parts. In the first part, a feature encoder
embeds the input images to a feature vector. The resulting
feature vector is divided into two parts, one part is used
for the prediction of the primary task, and the other part
is for the prediction of the spuriously correlated factors.
In order to make these two feature subvectors independent
from each other, the framework aims to reduce the mutual
information (MI) between them. Therefore, in the second
part, the MI is estimated with a Mutual Information Neural
Estimator (MINE) [34] to achieve independent features and
train a counterfactual invariant predictor. EnforcingMI-based
feature independence during training enables the proposed
MIMM to generate causal and counterfactual invariant pre-
dictions. The main contributions of this work are:

1) MIMM is a deep learning-based approach that is capa-
ble of predicting the primary task and the given spuri-
ous correlation.

2) Our model is able to reduce the influence of spuri-
ously correlated factors on the features of the primary
task and thus, avoids shortcut learning over spurious
correlations.

3) We show that MIMM exhibits robustness against vary-
ing spurious correlations and counterfactual samples.

4) The proposed pipeline can be easily adapted to different
tasks and applications. MIMMwas investigated on five
different databases including large-scale epidemiolog-
ical cohort studies with medical imaging data.

Our work is organized as follows. Firstly,
in Section II-Related Work, we provide a review of previous
work related to our problem. Section III-Causal Background
introduces causality and its challenges with spurious corre-
lation and confounding. The subsequent Section IV-Methods
gives a detailed introduction to MIMM, its architecture, and
its training process. In Section V-Experiments and Materi-
als, we introduce our experiments and the materials used.
We then present the Results and Discussion in Section VI.
Finally, in Section VII-Conclusion, we present our conclud-
ing remarks.

II. RELATED WORK
In the field of deep learning, causality has become an
increasingly important and relevant topic with the aim
to understand the relationship between input and output
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variables [35], [36], [37]. The main idea is causal represen-
tation learning which combines concepts from representation
learning and causal inference by predicting outputs from pat-
terns but with the incorporation of causal dependencies [38].
Research into the area of causality in deep learning has
focused on a range of topics, including causal inference,
domain adaptation, and shifts, as well as counterfactual
analysis [38], [39], [40], [41].

Important aspects for causal relationship learning were
raised in [28] and [38] in which the differences between
causal settings and predictive direction were defined.
Thereby, data X is composed of its causal component Y , the
real label of the primary task, and the spuriously correlated
factor Z . Our work focuses on the predictive direction, which
is the inverse of the causal direction [42] since the cause in
the given input images X are the effect of the ground truth Y
and all latent spuriously correlated factors Z [38], [43].

Multiple techniques have been developed to mitigate the
learning of biases in databases. One approach involves de-
biasing the training dataset through methods, like data aug-
mentation [44], to weaken spurious correlations by creating
counterfactual samples. However, data augmentation requires
specific domain knowledge. Another approach is to address
the class imbalance by oversampling the minority class with
replacement [45] or by incorporating data from different
sources to improve generalization [46]. Nevertheless, obtain-
ing data from diverse sources is often challenging, particu-
larly in the medical domain.

Another line of work adds new layers to the DL model that
filter biases during training. For instance, [47], [48] utilize
plug-in layers to remove the influence ofmetadata (confound-
ing) after a DL layer. However, this approach suffers from
computational inefficiency, as a closed-form solution needs
to be calculated for each feature at every iteration.

Other approaches aim to disentangle spuriously cor-
related features from the primary task features using
similarity measurements such as matrix correlation [49],
Hilbert-Schmidt independence criterion (HSIC) [50], [51],
cosine similarity [52], [53] as well as maximum mean dis-
crepancy (MMD) [54] as additional regularization terms after
hidden layers in the model.

Several approaches have been investigated to mitigate the
learning of biases in databases through adversarial learn-
ing [50], [55], [56]. These methods tackle the problem by
formulating a min-max optimization framework, where the
objective is to simultaneously maximize the prediction loss
associated with the spuriously correlated task and minimize
the loss related to the primary task. Previous studies have
shown the effectiveness of incorporating constraints into the
learning problem. [57]. However, these approaches faced
the challenge of minimizing the mutual information since
the calculation of MI is computationally complex, and the
MI is non-differentiable [58]. We tackle this problem by
estimating the MI with a MINE model [34]. In the scope of
this work, we follow the approach of [28]. While [28] rely on

FIGURE 1. Visualization of the causal direction, the spurious correlation,
and possible DL-based prediction paths when confounding is present in
data. (A) Current methods: Confounding causes a spurious correlation,
which bears the risk that a DL model learns a shortcut over a spuriously
correlated factor (e.g., writing style, see Fig. 2) instead of the real causal
relationship (e.g., shape) between input data X and ground truth label Y .
(B) Proposed method: By interrupting the shortcut, learning a spurious
correlation is avoided. Hence, the DL model is able to learn the real
causal relationship.

FIGURE 2. Example of a simplified causal image generation of
counterfactuals. (A) An image is generated by the variables Y and Z ,
where Y is the idea of the number 4 and Z is the writing style with a
fine-liner. (B) Changing the writing style Z from a fine-liner to a felt-tip
pen only changes the writing style but does not change the shape of the
number.

MMD as a regularization term in their loss term, we use the
estimated MI between the features relevant to the actual task
and the features affected by confounding factors as a penalty
term. This approach specifically targets the preservation of
invariance to counterfactuals and the prevention of shortcut
learning, which have a positive impact on the robustness of
the model against changes in data distribution or domain
shifts [28].

In the context of causal representation learning, the interest
in fair representation learning is growing due to the discovery
that many widely known databases, such as Adience [59],
IARPA Janus Benchmark A [60], and ImageNet [61] con-
tain significant biases and under-representation of certain
groups, e.g., darker-skinned subjects who are represented in
less than 20% of the samples. Similar unintentional biases
exist in medical databases [62]. Especially the influence of
scanners for medical imaging adds bias to the images due
to individual scanner variations [63]. Moreover, selection
effects, for instance, due to the choice of subjects for a
study, can also lead to unintentional under-representation or
oblivion of specific groups [62]. These biases and selection
effects tremendously influence the hazard of spurious correla-
tion within databases and hence, reinforce shortcut learning.
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Models trained on such databases tend to make discrimina-
tory and racially biased predictions and moreover, bear the
risk to make wrong conclusions, as demonstrated in [64]
and [65]. Therefore, several studies [56], [66], [67], [68], [69],
[70], [71], [72] focused on fair and invariant representation
learning with respect to protected and sensitive attributes.
In line with these works, we aim to provide a bias-free
learning strategy.

III. CAUSAL BACKGROUND
A common objective of a DL model is to predict a ground
truth label Y from an input X by learning a general mapping
function f that approximates the inverse of an underlying
causal mechanism [42], [73]. In such a scenario, input data
X are caused by the label Y and multiple latent variables Z ,
which we also refer to as spuriously correlated factors. For
the case of simplicity, we consider Y as one variable and
summarize Z as another variable. As exemplarily depicted in
Fig. 2A, the image X is caused by the digit Y = 4 and the
writing style Z = ‘‘thin’’.

In an ideal scenario, Y and Z are independent, and a DL
model is able to learn a mapping f that predicts Y from X
without being confounded by Z as formally stated [28]:

f (X) ⊥⊥ Z |Y (1)

As introduced in [28], a predictor f that fulfills the criteria
in (1) is counterfactually invariant. Thismeans the predictions
f (X) are invariant to perturbations Z∗ of Z on the input X and
hence,

f (X(Y ,Z )) = f (X(Y ,Z∗)). (2)

Regarding the example of Fig. 2, by changing the writing
style Z = ‘‘thin’’ to Z = ‘‘thick’’, the prediction of a counter-
factual invariant predictor remains the same. This fulfills the
criteria of (1) as well as of (2): f (X(Y = 4,Z = ‘‘thin’’)) =

f (X(Y = 4,Z = ‘‘thick’’)).
However, in practice, this mapping function is rarely able

to be an exact inverse of the causal mechanism due to biases,
confounding, selection effects, or other factors within the
training data. These kinds of factors induce, as shown in
Fig. 1A, spurious correlations between Y and Z , which con-
found the causal relationship between Y and X as well as Z
and X . A state-of-the-art predictor trained on the confounded
data may not be counterfactually invariant since it is not able
to differentiate between causal relationships and spurious
correlations. A predictor (unintentionally) trained on spurious
correlations fails as soon as the spuriously correlated factor Z
changes. Under these circumstances, (1) and (2) are no longer
valid.

In general, spurious correlations emerge due to a confound-
ing induced by an unobserved common cause. The common
cause principle of Reichenbach [74] states that there exists
an unobserved common cause U that explains the spurious
correlation between two statistically dependent variables Z
and Y but makes them independent when conditioning on
the common cause U . For instance, one physician working

in Room 1 with scanner A always performs MRIs on healthy
patients, while another physician working in Room 2 with
scanner B, an older version of scanner A, is in charge of
scanning patients with Alzheimer’s Disease. This creates a
spurious correlation between scanner A and healthy patients,
as well as scanner B and patients with Alzheimer’s Dis-
ease. However, the correlation between the scanner and the
Alzheimer’s Disease of a patient is spurious since there is no
causal explanation. Neither the scanner causes Alzheimer’s
Disease nor the patient causes the type of scanner. The present
common cause is the physician and having this information
leads to Y = ‘‘type of disease’’ and Z = ‘‘scanner’’ being
independent.

As depicted in Fig. 1B, the aim of our proposed approach
is to cut the predictive connection between Z and Y which
is generated by the spurious correlation, so that the real
underlying causal structure between X and Y is learned by
the predictor.

IV. METHODS
This section introduces the proposed architectural design of
MIMM. Section IV-A gives a general overview of the pro-
posed architecture MIMM, while Section IV-B and Section
IV-C describe the feature encoder and MINE [34] in more
detail, respectively.

A. MUTUAL INFORMATION MINIMIZATION
MODEL (MIMM)
The architecture of our proposed Mutual Information Mini-
mization Model referred to as MIMM, is designed to predict
both the primary task (Y ) and the spuriously correlated factor
(Z ) simultaneously as depicted in Fig. 3. Generally, the model
comprises four parts, the feature encoder, two classification
heads, and the MINE model.

B. FEATURE ENCODER MODEL AND
CLASSIFICATION HEAD
The feature encoder fFE (X, θFE) with the parameter θFE trans-
forms an input sample X to a feature vector F. This vector is
split into two parts. The upper part FY is responsible for the
prediction of the primary task with the ground truth Y while
the lower part FZ is used to predict the known spuriously
correlated factor with the ground truth Z . In the scope of our
work, the subvectors are of equal size and we set the length
of F to be the sum of the classes of Y and Z . Each subvector
is fed separately into a classification head, fy(FY , θY ) and
fz(FZ, θZ ), which is in our case a log-softmax. Thereby, the
classification head fY predicts Y from the feature subvector
FY , while the spuriously correlated factor Z is predicted by
the classification head fZ with FZ. The explicit architecture
of the feature encoder model is task-specific. It is therefore
described in Section V when introducing our experiments.
However, having this network architecture composed of

these two parts bears the risk that the vectors FY and FZ are
correlated and share mutual information. This implies that
the primary task predictor f (X) = fY (FY ) does not comply
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with (1) and thus, is not counterfactually invariant. As stated
above, this results in the problem that the prediction of Y
might be partially based on the spuriously correlated factor
Z and therefore, would fail in a new environment when Z has
changed. To avoid the problem of learning Y over the shortcut
of the spuriously correlated factor Z , we propose to minimize
the mutual information (MI) between FY and FZ in order to
obtain independent feature subvectors.

C. MUTUAL INFORMATION NEURAL ESTIMATION (MINE)
To estimate the MI between the upper part FY and the lower
part FZ of the feature vector, both feature subvectors serve
as input to a MINE model, which is able to estimate the MI.
MINE was introduced in [34]. The estimated MI serves as
a penalty term in the loss function of the feature encoder as
shown in (6). The penalization forces the feature encoder to
generate independent vectors FY and FZ.
MI is a measure to quantify the dependence between two

variables. It is also described as the difference between the
entropy of a marginal variable H (FY ) and the conditional
entropy H (FY |FZ). In general, the estimation of MI for dis-
crete random vectors FY and FZ is defined as

I (FY ;FZ) =

∑
FY ,FZ

p(FY ,FZ)log
(
p(FY ,FZ)
p(FY )p(FZ)

)
, (3)

where p(FY ,FZ) is the joint probability mass function (PMF)
and p(FY ) and p(FZ) are the marginal PMFs. As (3) reveals,
MI can also be represented as the Kullback-Leibler (KL-)
divergence DKL(p(FY ,FZ)||p(FY )p(FZ)) between the joint
distribution p(FY ,FZ) and the product of the marginal dis-
tributions, p(FY ) and p(FZ), since the KL-divergences is
described as

DKL(P||Q) = Ep(X)

[
log

(
p(X)
q(X)

)]
. (4)

The vectors FY and FZ are independent if and only if
I (FY ;FZ) = 0.
The idea of MINE is to parameterize a set of functions

F = {Tθ }θ∈2 by a neural network, called the statistic
network fMINE. It returns the output of one parameterized
function Tθ (FY ,FZ). Therefore, the dual representation of
KL-divergence is introduced and described by the lower
bound in 5.

DKL(P||Q) ≥ sup
T∈F

EP[T ] − log(EQ[eT ]) (5)

The architecture of the statistic network fMINE is composed
of four fully-connected layers, where the first three comprise
400 units and the last layer returns a single output with the
estimated MI. The output of the MINE model is computed
and maximized with (5) and serves as a lower bound approx-
imation for the KL divergence or MI, respectively, see [34]
for more details.

D. TRAINING PROCESS
The feature encoder model fFE is minimized based on the loss
function LMIMM in (6). It is composed of the cross-entropy

FIGURE 3. Architecture of the proposed MIMM. Feature encoder fFE
encodes an input image X , resulting in a feature vector (F) which is split
into two parts. The upper part FY predicts the primary task Y with the
classification head fY , while the lower part FZ predicts the spuriously
correlated factor Z with the classification head fZ . The MI between FY
and FZ is estimated by a MINE model fMINE. The aim is to minimize the
MI between the two parts of F. For this purpose, MI is added as penalty
to the loss function LMIMM when updating the fFE. The fMINE itself is
updated with its estimated MI value.

TABLE 1. Summary of used datasets, primary tasks, and spurious
correlation task of all experiments.

loss of the primary task Y and its estimation Ŷ = fY (FY )
in (7) as well as of the cross-entropy loss of the spuriously
correlated factor Z and its estimation Ẑ = fZ (FZ) in (8), and
is additionally penalized by the estimated MI. Even though,
the ideal value of MI would be 0, in practice this value of
MI = 0 is not achieved, since the MI regularization term is a
soft constraint.

Since the input to MINE changes after each update of
the feature encoder model, the training process of MIMM
is performed in an alternating fashion. Thereby, the feature
encoder is trained for 1 batch followed by (NB − 1) batch
updates of the MINE model, where NB is a hyperparameter.

LMIMM = LCE, Y(X,Y ) + LCE, Z(X,Z ) + λ · MI(X) (6)

LCE, Y = −Y T log fY (FY ) (7)

LCE, Z = −ZT log fZ (FZ) (8)
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TABLE 2. Number of training samples for the primary and spurious
correlation task in all experiments. (In experiment 2, both Y and Z are
10-class variables. The short notation Y = 1 (Z = 1) represents the union
of the remaining 9 classes with respect to the selected class Y = 0
(Z = 0)).

V. EXPERIMENTS AND MATERIALS
Our proposed MIMM approach is investigated on five dif-
ferent databases. This chapter describes our experimental
design including the evaluation steps and general training
setting, followed by a description of the applied datasets and
the methods used for comparison. Our implementation is
available at www.github.com/lab-midas/MIMM.

A. EXPERIMENTAL DESIGN
1) TASKS AND DATASETS
We conduct five experiments using five different datasets.
All experiments are designed in a similar way. Four exper-
iments perform a two-class primary classification task Y
and a two-class spuriously correlated factor classification
task Z . The other experiment deals with a ten-class primary
and a ten-class spuriously correlated factor task. Table 1
summarizes both tasks and the applied dataset in all five
experiments, see below for more details about the tasks and
datasets.

2) DATASET DISTRIBUTION
Table 2 summarizes the number of training samples for all
(Y , Z ) combinations in each experiment. Clearly, the primary
classes Y are all balanced, i.e. each primary task Y has the
same number of training samples. In each primary class Y ,
however, the training samples originate from two or ten differ-
ent spuriously correlated factorsZ with a ratio of roughly 95:5
for the first two (non-medical) experiments and 90:10 for the
remaining threemedical experiments. Thismeans 95% (90%)
of the training samples of one primary class are associated
with one value of the spuriously correlated factor while the
remaining 5% (10%) training samples are associated with the
other values of the spuriously correlated factor. This causes
a spurious correlation between the primary task Y and the
spurious correlated factor task Z which could lead to shortcut
learning. As a representative example, Fig. 4a) depicts the
class distribution of Experiment 4 during training, where the
subjects are divided into two age groups: young (≤51 years)
and old (≥57 years). These groups are spuriously correlated
by sex. Hence, during training 90% of the young subjects are
female and only 10% of the old subjects are female. It is vice
versa for the male subjects.

FIGURE 4. UKB/NAKO age group and sex (#4): Data distribution for the
classification of age groups where group young is under the age of
51 and group old is above the age of 57. For a distinct separation of the
age groups, subjects between 51 and 57 years are excluded from the
experiment. The data samples are equally drawn from UK Biobank and
NAKO. (a) Confounded training dataset; young subjects: 90% female, 10%
male, old subjects: 90% male, 10% female. (b) Confounded test dataset
with unseen samples and inverted distribution compared to the training
distribution; young subjects: 10% female, 90% male, old subjects: 10%
male, 90% female. (c) Balanced test dataset with unseen samples and
balanced distribution; young subjects: 50% female, 50% male, old
subjects: 50% male, 50% female.

a: EVALUATION
To evaluate the trained models and to demonstrate the sup-
pressed shortcut learning, the classification accuracy is com-
puted for a) new unseen samples of a validation dataset with
the same distribution as the training set (e.g., Fig. 4a), b) a
test set with a flipped distribution (e.g., Fig. 4b) and 4c) a
dataset with balanced classes.

By carrying out the evaluation on these three datasets,
we aim to test the performance of our model using different
distributions. We expect that MIMM is able to avoid per-
formance degradation when shifting from validation to test
distribution. To show that FY and FZ are independent and
do not share information, FY is additionally used to predict
Z (denoted as FY → Z ), while FZ predicts Y (denoted as
FZ → Y ). For this evaluation step, the balanced dataset c)
is applied. Thereby, an accuracy close to a random guess is
desired.

b: TRAINING SETTINGS
All our models are trained with 5-fold-cross validation using
ADAM optimizer with a learning rate of 10−4. The training
of eachMIMMmodel is performed asynchronously, meaning
the feature encoder and the classification heads are jointly
trained for one batch followed by NB − 1 updates of MINE.
The estimated MI is added to the loss function multiplied by
the hyperparameter λ as shown in (6).

B. EXPERIMENTS ON BENCHMARK DATASETS
The first two experiments are based on two non-medical
benchmark datasets.

VOLUME 11, 2023 64075



L. Fay et al.: Avoiding Shortcut-Learning by MI Minimization in DL-Based Image Processing

FIGURE 5. Morpho-MNIST (#1): Selection of thinly and thickly written
digits from the Morpho-MNIST dataset. The different writing styles are
the spuriously correlated factor attributed to the confounding influence
of the writer in the scope of this experiment.

1) MORPHO-MNIST (#1)
The first experiment aims to predict small digits (0-4) and
high digits (5-9) on the Morpho-MNIST dataset [75] which
is the primary binary classification task. This dataset is a
morphometric extension of the well-known MNIST dataset.
In the scope of this work, we use samples that are thinned and
thickened. A selection of morphometric digits is presented
in Fig. 5. From this dataset, we create a confounded dataset
with the different writing styles, thin and thick. To give a real-
world example, two writers create training data. One writer
writes mostly small digits between 0-4 with a fine liner. The
other writer has a felt-tip pen and writes primarily high digits
between 5-9. This setup bears the risk that a typical neural
network trained on this data does not learn the digit group
based on the shape of the number but rather by the thin or
thick writing style. However, our aim is to overcome this
challenge and force the model to predict the correct digit
group based on the shape of the number.
Settings: The numbers of training samples for this experi-

ment are shown in Table 2. Both digit groups are balanced
with the same number of 9264 + 487 = 9751 samples.
However, in each digit group, the ratio of training data amount
for thin/thick writing style is approximately 95:5 for small
and 5:95 for high digits. This causes a spurious correlation
between the target primary class Y and writing style Z .

Likewise the original MNIST dataset, each sample is two-
dimensional with a resolution of 28 × 28 pixels. The archi-
tecture of the feature encoder is composed of three of 3 × 3
convolutional layers with 6 and two times 16 channels. After
each convolutional layer, ReLU activation and 2 × 2 max-
pooling are operated on the output. This is followed by two
fully-connected layers of size 256 and 4. Training is per-
formed on a batch size of 1000 samples with NB ∈ {3, 5} and
λ ∈ {0.05n | n ∈ Z, 0 ≤ n ≤ 20}, where n is a grid search
parameter to optimize λ.

2) FASHION-MNIST (#2)
The second experiment applies the MIMM model to the
Fashion-MNIST dataset. The original Fashion-MNIST [76]
dataset consists of 28 × 28 gray-scale images grouped in ten
classes of fashion items. To demonstrate the challenge of con-
founders in this dataset, we created an artificial confounding
by adding different types of boundary bars to each image.
Fig. 6 shows the ten different classes with the most often
occurring bar per class during training. During training, 95%
of the image samples of each class consist of the bar shown

FIGURE 6. Adapted Fashion-MNIST (#2): Selection of Fashion-MNIST
samples with the confounding boundary bar of the major classes during
training. Images are gray-scale, but to emphasize the bars the
visualization is colored.

in Fig. 6. The remaining 5% samples consist equally of the
bar types of the other nine classes.
Settings: The training set consists of a total of 5997 sam-

ples per class. The exact class distributions of Y and Z during
training are given in Table 2 Experiment 2. MIMM is trained
with a batch size of 1000 samples and with NB ∈ {3, 5}
and λ ∈ {0.05n | n ∈ Z, 0 ≤ n ≤ 20}. The architecture of
the feature encoder comprises two convolutional layers with
32 and 64 channels each followed by batch normalization and
ReLU activation function. Both convolutional layers use a
kernel size of 3 and a max-pooling operation with a kernel
size of 2. This is followed by three fully-connected layers
with 600, 120, and 20 units. The feature vector is of size 20,
hence FY and FZ are of size 10. The aim of the primary task
Y is to predict the correct fashion label, while Z represents
the ten different types of bars.

C. EXPERIMENTS ON MEDICAL DATASETS
The following three experiments are based on medical
datasets. All medical experiments and results are reviewed
and validated by a radiologist (S.G.) with more than 10 years
of clinical experience.

1) UK BIOBANK AND NAKO
The following two experiments are investigated on the UK
Biobank (UKB) and the German National Cohort (NAKO).
Both datasets collect a large cohort of brain MR images
acquired with 3T Siemens Skyra MRI scanners. We used
the T1-weighted 3D MPRAGE images with a resolution of
1×1×1 mm3 of the brain. In this study, we extract themiddle
slice of each image and create a two-dimensional input for our
model with a matrix size of 256× 256 voxels by cropping or
padding the images to this dimension. All images are pre-
processed by zero mean and unit variance scaling.

a: PREDICTION OF SEX FROM BRAIN MRI (#3)
The primary task Y of this experiment is to predict the sex
of a given subject based on its anatomical features in brain
MRI and without relying on the spurious correlation created
by the scanner differences of the two acquisition sites UKB
and NAKO.
Settings: The training dataset comprises 8326 sam-

ples from both acquisition sites. Thereby, the exact class
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distribution between female/male samples fromUKB/NAKO
is given in Table 2 Experiment 3. The applied feature encoder
architecture consists of four 3 × 3 convolutional layers with
channel sizes of 16, 32, 64, and 32, respectively. Each con-
volution output is processed by batch normalization, ReLU
activation max-pooling with a kernel of size 2. After the
convolutional layers, three fully-connected layers with 600,
120, and 4 units are used to create the feature vector. The
training of MIMM is performed with a batch size of 420 and
with NB ∈ [3, 5] and λ ∈ [0.3, 0.5].

b: PREDICTION OF AGE GROUP FROM BRAIN MRI (#4)
This experiment aims to predict the age group of sub-
jects from the brain MRI. The patients are split into two
groups, young (≤51 years) and old (≥57 years). Both groups
comprise an equal amount of MRI data from UKB and
NAKO.
Settings: In total, the training was conducted with

5340 subjects, the exact class distribution between young/old
and female/male subjects is given in Table 2 Experiment 4.
The architecture and training parameters remain consistent
with those employed in the first medical experiment.

2) ALZHEIMER’s DISEASE NEUROIMAGING INITIATIVE
a: PREDICTION of ALZHEIMER’s DISEASE FROM
BRAIN MRI (#5)
This experiment utilized the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database and focused on ana-
lyzing the T1-weighted 3D brain MRI with a resolution of
1× 1× 1mm3 acquired by scanners of the manufacturers GE
or Siemens. The aim of this experiment is the prediction of
Alzheimer’s Disease (AD) and healthy controls (HC). The
data is spuriously correlated by the manufacturer which is
either GE or Siemens. To generate samples for this experi-
ment, pseudo-3D MRIs were created by cropping or padding
each dimension of the six middle slices to a dimension of 256,
resulting in a tensor shape of 6 × 256 × 256. Each tensor is
normalized by zero mean and unit variance scaling.
To increase the number of training samples, data augmenta-
tion technique of random affine transformation with rotation
degrees of -5 to 5, translation of 0.1 to 0.2 in both directions,
and scaling factors ranging from 0.8 to 1.2 was applied to the
dataset.
Settings: The original training dataset consists of

1718 samples. Including the augmented samples, the training
dataset is increased to 5154 samples. The exact composition
of the classes HC and AD confounded by the type of manu-
facturer GE and Siemens during training is given in Table 2
Experiment 5. It is composed of 2322 HC and 255 AD of
Siemens scanners as well as 2322 AD and 255 HC of GE
scanners. The feature encoder shares the same architecture as
the feature encoder of the experiments on UKB and NAKO.
However, due to limited computation capacity, the batch size
was decreased to 280. The training of MIMM is conducted
with NB ∈ [3, 5] and λ ∈ [0.3, 0.5].

D. METHODS FOR COMPARISON
The proposed method is compared with the previously
introduced approaches. The reference methods are shortly
described in the following.
Baseline: We refer to baseline as a network that utilizes

the same feature encoder as the proposed MIMM model but
does not incorporate the MI estimation as loss penalty. The
baseline model is capable of predicting both Y and Z .
Rebalancing: Instead of training the model on the

imbalanced class, rebalancing generates balanced classes by
sampling with replacement from the minor represented spu-
riously correlated factor class of each primary task class. The
model architecture is equivalent to the baseline architecture.
Metadata Normalization (MDN): Metadata Normaliza-

tion, a method that was previously described in [47], removes
themetadataMβ, which is the confounding, from the features
F after each layer and outputs the corrected features R. Math-
ematically, it can be described as a general linear model as in
(9), where β is an unknown set of linear parameters.

R = MDN(F;M) = F−MβM (9)

This type of model is not able to predict Z , therefore, we only
use it to compare the results of the primary task Y . See [47]
for more details.
EnD: (Entangeling and Disentangeling) is a regularization

strategy proposed in [49]. The strategy involves minimizing a
joint loss function that incorporates both the standard cross-
entropy loss and an entangling and disentangling loss. In this
context, entangling refers to the correlation of extracted fea-
ture vectors belonging to the same primary task, whereas
disentangling refers to the ability to separate the extracted
feature vectors from the unwanted confounding. Similarly to
MDN, this architecture does not allow the prediction of Z .
Hence, we only compare the results of the primary task Y .
See [49] for more details.

VI. RESULTS AND DISCUSSION
This chapter provides the results and analysis derived from
our experiments. Firstly, we present the outcomes on the non-
medical benchmark datasets, namely Morpho-MNIST and
Fashion-MNIST, followed by the results obtained from our
medical experiments. The chapter concludes with an overall
discussion that synthesizes the key findings and highlights
the implications and future work of our research. In addi-
tion, we conducted further experiments on the BiasedM-
NIST database [50]. These experiments aim to compare
our proposed method with recently introduced methods for
confounder-free learning. The complete details of the exper-
iment, including the obtained results, can be found in the
Supplementary Material.

A. EXPERIMENTS ON BENCHMARK DATASETS
1) MORPHO-MNIST
The models that obtained the best performance over
the 5-fold cross-validation are presented in Table 3. For
MIMM, the best performing model uses the hyperparameters
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NB = 3 and λ = 0.55. Although all reference meth-
ods exhibit a high increased accuracy on the validation set,
which shares the same distribution as the training set, our
method MIMM achieves the highest 94.0% for the more
critical test set with an inverted distribution as the training set.
MIMM demonstrates a minimal difference of 1% in accuracy
between the validation and test set, whereas the rebalancing,
MDN, EnD, and baseline methods experience a significant
decrease of 12.7%, 34.1%, 7.9% and 16.4%, respectively.
This signifies that these models lack the ability to generalize
in the presence of spurious correlation to different writing
styles. Moreover, to demonstrate the independence between
FY and FZ, we conduct predictions on the balanced dataset
using the opposed label, i.e., we predict Z given FY and
Y given FZ. Thereby, an accuracy of 50% indicates that
one subvector does not convey information about the other
subvector. As shown in Table 3, the accuracy of FZ predict-
ing Y is close to random for all methods. This means, FZ
indeed does not contain any information about Y . However,
our proposed model comes closest to randomness with an
accuracy of about 50%. For the prediction of the writing
style Z with FY , MIMM reaches also an accuracy close to
random with 49.9%, while the other methods are apart from
random by 4.6% (Rebalancing), 19.1% (MDN), 4.3% (EnD),
and 9.2% (Baseline). Thus, the subvectorsFY of the reference
methods remain dependent as they contain information about
the writing style Z . The t-SNE plot in Fig. 7 shows the
feature vector component FY colored by its labels of Z . The
t-SNE plots of the reference models show clusters of the thin
(red) and thick (blue) writing styles. This reveals that FY
still inherits information of the writing style Z as already
demonstrated by the predictionFY → Z in Table 3. However,
it is desired thatFY is free from information about the writing
style. This is given for MIMM, since FY is free from any
writing style information, i.e. the Z classes, thin and thick,
are not separable anymore.

To compare the actual estimated MI between both FY and
FZ, we take the trained feature encoder of the rebalancing,
baseline, and MIMM model, freeze it, and train a randomly
initialized MINE model with the same architecture as in
the MIMM model for 1000 epochs. As mentioned above,
a smaller value of MI indicates less information sharing
between the feature vector subvectors. The MINE estimation
training is shown in Fig. 14a) of the AppendixVII. The
MI of MIMM converges to the smallest value with approx.
0.45 while the baseline model converges above 0.9 and
the rebalancing model reaches a value of approx. 1.1. This
emphasizes the above results as it shows that MIMM is able
to ignore the spurious correlation and focuses on task-relevant
features.

To conclude, these results demonstrate that the MIMM
model trained on the Morpho-MNIST dataset is robust to
changes in the writing style Z and shows counterfactual
invariant predictions.

TABLE 3. Morpho-MNIST (#1): Classification accuracy in percentage of
digit group Y (small/high) and writing style Z (thin/thick). a) Val. refers to
the validation dataset consisting of unseen samples with the same class
distribution as the training dataset. b) Test refers to the test dataset
consisting of unseen samples with a flipped distribution as the training
dataset. c) Bal. refers to a balanced dataset with unseen samples. The
accuracy of FY → Z (estimating writing style Z from FY ) and FZ → Y
(estimating digit group Y from FZ) are better if close to a random guess
(50%).

FIGURE 7. Morpho-MNIST (#1): t-SNE visualization of the feature vector
component FY colored by its Z class labels, thin (red) and thick (blue).
FY is the FV component that should contain only information about the
digit group, small or high. It demonstrates the contained feature
information of Z in FY . Hence, if the classes thin and thick are not
separable anymore, the independence of FY from Z is demonstrated.
While the t-SNE plots of the reference methods still allow a fuzzy
separation between thin and thick (i.e. the confounded variable), the
separation is impossible for our proposed model MIMM.

2) FASHION-MNIST
This experiment aims to predict the fashion item Y as well
as the type of the boundary bar Z as shown in the samples
of Fig. 6. The results of the best performing models of this
experiment are shown in Table 4. Predicting the type of bar
is distinctively the easier task to solve as the prediction of
Z achieves approx. 100% accuracy for all models and distri-
bution shifts. Thus, this bears the risk that the model learns
patterns based on the spurious correlation instead of the shape
of the fashion item. The MIMM model trained with NB = 5
and λ = 0.3 yields the highest test accuracy of the fashion
items Y with 79.9%. The results of the MIMM’s prediction
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TABLE 4. Adapted Fashion-MNIST (#2): Comparison of classification
accuracy of Y , fashion item, and Z , type of bar. Accuracy is shown in
percentage. The accuracy of FY → Z (estimating type of bar from FZ) and
FZ → Y (estimating fashion type from FY ) are better if close to random
guess (10%) since this tests the prediction of the opposed label.

of Z using FY with λ = 0.3 deviates from random guess by
6.6%. This suggests that FY still contains some information
related to the bar types Z . The MIMM model, which was
trained with NB = 5 and λ = 0.5, shows a decrease in test
accuracy of 1.6%, but it is found to be with 12.0% closer to a
random guess when predicting Z using FY . This is logical
because a larger value of lambda gives more emphasis to
the MI regularisation term MI(X) in equation (6) and further
reduces the dependence between FY and FZ. Among the
reference methods, rebalancing and EnD demonstrated the
highest accuracy of 78.5% on the test set. Their accuracy for
FY in predicting Z is further from random guess than the two
MIMM models, with a distance of 8.3% and 11.0% respec-
tively. Likewise, the t-SNE plots in Fig. 8 which show the
feature vector component FY colored by the bar type labels
FZ, display a certain level of separable bar type clusters for
rebalancing as well as forMDN, EnD, and the baseline. In the
t-SNE plot of MIMM, distinct clusters are not discernible for
the bar types. This demonstrates, as desired, that the feature
vector component FY does not contain information of the
bar type Z . Furthermore, in Fig. 14b) the estimated MI value
increases tremendously even after 500 epochs of training for
rebalancing and baseline, while the value of MI for MIMM
is close to 0.

Based on these results, it can be inferred that MIMM
mitigates the impact of the spurious correlation given by the
bar types and performs better than the reference methods in
predicting counterfactual samples.

B. EXPERIMENTS ON MEDICAL DATASETS
1) PREDICTION OF SEX IN BRAIN MRI FROM UK
BIOBANK AND NAKO
The best results of MIMM for the prediction of sex and the
different acquisition sites, UK Biobank and NAKO, from
brain MRIs are achieved by training the model with NB = 5
and λ = 0.5. As the accuracy of themethods in Table 5 reveal,

FIGURE 8. Adapted Fashion-MNIST (#2): t-SNE visualization of the
feature vector component FY and colored by its bar type labels Z .
FY should contain only information about the fashion item. Hence, if the
Z labels (i.e. the confounded variable) are not separable anymore, the
independence of FY from Z is demonstrated. The reference methods still
allow some degree of separation of the bar types FY . Only the MIMM
model is able to fully remove the influence of Z on FY and does not show
any colored bar type clusters.

it is easier for the model to learn to predict the acquisition
site Z than the sex of the subjects since the accuracy of Z is
close to 100% for validation and test distributions. This bears
the risk to use spuriously correlated factors, i.e. acquisition
site to predict sex rather than learning anatomical features
that are causally linked to sex. The fact that the reference
methods learn the spurious correlation rather than the causal
relationship is reflected in Figure 10. While unseen samples
from the major classes during training, female brains from
UK Biobank and male brains from NAKO, are correctly
predicted (Fig. 10a)), the samples from the underrepresented
class (Fig. 10b)) are only correctly predicted by the proposed
MIMM model. This demonstrates the counterfactual invari-
ance of MIMM. The baseline and MDN models are unable
to predict the subject’s sex based on its anatomical features
as the accuracy between validation and test set decreases by
approx. 15%. While EnD achieves on the validation dataset
the highest accuracy with 98.7%, our model achieves equal
accuracy on the test set. EnD and rebalancing have a slightly
higher accuracy on the prediction of Y on the balanced
dataset. However, as the results of the opposed prediction,FY
on Z and FZ on Y , disclose, FY and FZ are independent since
the performances for MIMM are close to random guess with
50%. Compared to the other methods, MIMM is closest to
random guess.

The t-SNE plots in Fig. 9 highlight the independence ofFY
from features related to the acquisition site for the proposed
MIMM model. The feature vector subvector FY does not
allow any separation between the acquisition sites, UKB (red)
and NAKO (blue). The other reference methods still allow
a separation of the acquisition sites. This means, FY still
contains information about the acquisition site Z .
When training the MINE model after freezing the feature

encoder, the resulting estimated MI between the feature vec-
tor components of the trained comparison models on sex and

VOLUME 11, 2023 64079



L. Fay et al.: Avoiding Shortcut-Learning by MI Minimization in DL-Based Image Processing

TABLE 5. Brain MRI of UK Biobank and NAKO - sex and acquisition site
(#3): Comparison of classification accuracy of sex Y and acquisition site
(UK Biobank and NAKO) Z , on brain MRI. Accuracy is shown in
percentage. The accuracy of FY → Z (estimating acquisition site from FY )
and FZ → Y (estimating sex from FZ) are better if close to random
guess (50%).

FIGURE 9. Brain MRI of UK Biobank and NAKO - sex and acquisition
site (#3): t-SNE visualization of the feature vector component FY and
colored by the labels of Z , UKB (red) and NAKO (blue). FY is the FV
component that should only contain information about the anatomical
features related to sex within the brain MRI. While the t-SNE plots of the
reference methods still allow a separation between UKB and NAKO, for
MIMM the separation is, as desired, impossible.

acquisition site sharemore information than the feature vector
parts of MIMM as MIMM’s MI value converges around 0.4.
In comparison, the baseline converges to aMI value of approx
1.2 and rebalancing to approx. 0.8. The training of MINE
is shown in Fig. 14c) of the AppendixVII. To sum up the
given results, our proposedmodelMIMM is robust to shifts in
distribution and let us conclude that the trainedMIMMmodel
is counterfactual invariant.

2) PREDICTION OF AGE GROUPS IN BRAIN MRI FROM
UK BIOBANK AND NAKO
Table 6 shows the best results of the trained models on the
age group, young (≤51 years) and old (≥57 years), and sex.
The prediction accuracy of sex Z yielded almost 100% for all
methods which indicates that predicting the sex is the easier
task. However, it also reveals that the prediction of the age
group might be based on the spuriously correlated pattern
created by sex, as this is easier to learn than the anatomical

FIGURE 10. Prediction results Brain MRI of UK Biobank and NAKO - sex
and acquisition site (#3): (Left) Unseen samples of the major classes of
the validation set (female brain from UK Biobank, male brain from NAKO)
are predicted correctly for all methods. (Right) Unseen samples of the
major class of the test set (female brain from NAKO, male brain from UK
Biobank) are only correctly predicted by MIMM.

features that are causally related to the age group. While
rebalancing achieves on the validation dataset the highest
accuracy for both Y and Z , its accuracy decreases by 43%
for Y and 2.1% for Z on the test set. MIMM achieves 88%
on the validation set for Y and drops by only 22% on the
test set. In case of the prediction of sex, MIMM has a slight
drop in accuracy of 0.1%. The other methods of compari-
son, MDN, EnD, and Baseline, exhibit a significant decrease
in accuracy of approx. 40% and higher when transitioning
from validation to test distribution. This is a distinct indi-
cation, that MIMM performs best on distribution changes.
On the balanced dataset, rebalancing and MIMM achieve
both an accuracy of 97.4% for the predicted sex. Neverthe-
less,MIMMdemonstrates superior performance in predicting
the age group from brain MRI scans with a 5% improvement
in accuracy in comparison to rebalancing. Additionally, the
results of the inverted prediction of FY with Z labels and FZ
with Y labels demonstrate that the MIMM model discrim-
inates the features for Y and Z more effectively compared
to the other methods. This is highlighted in the t-SNE plots
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TABLE 6. Brain MRI of UK Biobank and NAKO - age group and sex (#4):
Comparison of classification accuracy of age group Y - young (≤ 51 years)
and old (≥ 57 years) - and sex Z on brain MRI. Accuracy is shown in
percentage. The accuracy of FY → Z (estimating sex from FY ) and
FZ → Y (age group from FZ) are better if close to random guess (50%)
since this tests the prediction of the opposed label.

FIGURE 11. Brain MRI of UK Biobank and NAKO - age group and sex
(#4): t-SNE visualization of the feature vector component FY , colored by
the labels of Z , female (red) and male (blue). FY is the feature vector
component that should only contain information about the anatomical
features related to age. If female and male (i.e. the confounded variable)
are not separable anymore, the independence of FY from Z is
demonstrated. This is only given for the proposed MIMM model.

in Fig. 11, where a separation of the Z classes, female
and male, from FY is still recognizable for the reference
methods, whereas MIMM removed most of the information
of Z from FY . Correspondingly, the estimated MI (<0.5) of
theMIMMmodel is smaller than theMI values of the baseline
(≈1) and rebalancing with (≈3.1) as shown in Fig. 14d).
This is an additional demonstration of the removal of MI
in FY and FZ.

Given these results, the spurious correlation between the
age group and sex is decreased by MIMM and this makes
the prediction compared to the other methods more robust
to distribution shifts and demonstrates its counterfactual
invariance.

3) PREDICTION OF ALZHEIMER’s DISEASE IN BRAIN
MRI FROM ADNI
This experiment aimed to differentiate between healthy con-
trols (HC) and Alzheimer’s Disease (AD) using pseudo-3D

brain MRI with six slices. Its results are displayed in Table 7.
The training data contains a spurious correlation given by
the scanner, which is either from the manufacturer Siemens
or GE.

Changing the data distribution from validation to testing
leads to decreased accuracy for all methods. Especially, the
baseline, MDN, and EnD methods show an accuracy below
50%, clearly indicating a learned shortcut instead of the
causal relationship between anatomical brain differences and
Alzheimer’s Disease. When evaluating the model on a bal-
anced dataset, MIMM performs best with 67.7%. In general,
we need to acknowledge that limited data and limited com-
putational capacity, prevented our research from using deeper
architectures and larger mini-batches to further improve the
AD prediction. Nevertheless, the prediction of the scanner’s
manufacturer is not only the highest for MIMM but also with
97.4% on the balanced dataset close to 100 %. The reference
methods achieved only about 93.4% on the same dataset.

Although rebalancing is trained on more samples due to
resampling with replacement, it is not able to remove the
influence of the spuriously correlated factor in the same way
as MIMM. This is not only shown by the inverse estimation
(FY → Z and FZ → Y , but also by the t-SNE plots in
Fig. 12. For rebalancing, MDN, EnD, and baseline, clus-
ters of the type of scanner are clearly distinguishable from
the feature vectors FY in their respective plots. However,
a distinction between the scanners is much more difficult for
MIMM.

Fig. 13a) provides an exemplary illustration where samples
from the major class during training, namely healthy controls
by Siemens and Alzheimer’s by GE, are correctly predicted
by all models. However, examples from the underrepresented
class during training (Fig. 13b)), namely healthy controls by
GE and Alzheimer’s acquired by Siemens, are only correctly
predicted by our MIMM model.

By training the MINE model with the features of the
trained feature encoder to investigate the behavior of MI
between FY and FZ, we found that the baseline and rebalanc-
ing are converging around 2.2 and 1.2, respectively, whereas
theMI ofMIMM is close to 0.1. This emphasizes thatMIMM
is the most successful at avoiding the spurious correlation.
The MINE training curve of this experiment is shown in
Fig. 14e) of the AppendixVII.

C. DISCUSSION
In this paper, we address the challenge of spurious correla-
tion on non-medical benchmark and medical datasets. The
complexity of confounding in databases is tremendous and
threatens the robustness of deep learning-based prediction
which is especially crucial for the future application of deep
learning algorithms in clinical workflows. The introduction
of our novel method MIMM demonstrates the feasibility of
suppressing the occurrence of spurious correlations generated
by a known confounder. We evaluated the method on non-
medical benchmark and medical datasets and compared it
with a baseline model without MI estimation, with MDN,
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TABLE 7. Brain MRI of ADNI - Alzheimer’s Disease and manufacturer
(#5): Comparison of accuracy of the prediction of patient type Y (healthy
controls vs. Alzheimer’s Disease), and scanner Z (GE vs. Siemens).
Accuracy is shown in percentage. The accuracy of FY → Z (estimating the
manufacturer from Alzheimer’s Disease class feature vector) and FZ → Y
(estimating Alzheimer’s Disease from manufacturer class feature vector)
are better if close to random guess (50%) since this tests the prediction of
the opposed label.

FIGURE 12. Brain MRI of ADNI - Alzheimer’s Disease and manufacturer
(#5): t-SNE visualization of the feature vector component FY , colored by
the labels of Z , Siemens (red) and GE (blue). FY is the feature vector
component that should only contain information about the anatomical
features related to the manufacturer. If Siemens and GE (i.e. the
confounded variable) are not separable anymore, the independence of FY
from Z is demonstrated. This is only given for the proposed MIMM model.

a method that removes the confounding after each DL layer,
with EnD, which removes confounding by an additional
penalty, and by rebalancing the minor represented class in the
given training dataset to train the model on balanced data.

We demonstrated that in all experiments our approach
performs best. For most of our experiments, the reference
method rebalancing and EnD could provide the closest results
to our method.

Nevertheless, when estimating Y with the opposed feature
vector FZ and Z with the opposed feature vector FY , MIMM
provides the closest results to random, which shows us that
it learns features without confounding influence. Moreover,
by visualizing the learned feature vectors of the primary
tasks, colored by the labels of the spuriously correlated
factor, MIMM could show for all our experiments that a
distinction of the spuriously correlated factor is impossible.

FIGURE 13. Prediction example Brain MRI of ADNI - Alzheimer’s
Disease and manufacturer (#5): (Left) Unseen samples of the major
classes of the validation set(healthy control (HC) from Siemens scanner,
Alzheimer’s subject (AD) from GE scanner) are predicted correctly for all
methods. (Right) unseen samples of the major class of the test set
(HC from GE scanner, AD from Siemens scanner) are only correctly
predicted by MIMM.

Thus, MIMM is a counterfactual invariant predictor that is
able to predict the target output based on the causal relation-
ship with the input. In contrast, the presented comparative
methods lack the ability to completely remove the influence
of the spuriously correlated factor in all of our experiments.
This leads to the conclusion that thesemethods fail to perform
as counterfactual invariant predictors.

By inverting the dataset distribution between the validation
and test datasets, we also showed that MIMM is robust to
data distribution shifts and out-of-domain data as it showed
the highest performance on the test dataset in all experiments.
By studying different types of datasets with two-dimensional
and three-dimensional acquisitions, we could show the sim-
plicity of adapting MIMM for different tasks.

We acknowledge the following limitations of our study.
These limitations will be addressed in our future work. While
we have demonstrated that the MIMM approach performs
well with non-binary tasks, our experiments have focused
solely on the case of a priori known single confounding.
Nevertheless, we note that the architecture of the MIMM
model allows for a simple extension to accommodatemultiple
confounding factors. Adapting the mutual information (MI)
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FIGURE 14. Training of MINE model to estimate the MI between FY
and FZ. The desired output of a small MI, which indicates less common
information between the feature vector components, is best for the
MIMM model.

estimation process to multiple primary tasks and/or multiple
confounding factors presents a more significant challenge,
as the question of how to estimate the MI between the
primary task and each spuriously correlated factor must be
addressed. Extending our work to handle multiple and diverse
(binary, multi-class, regression) confounding factors is an
important direction for future work. In addition, in our future
study, we will investigate the potential benefits of utilizing
imbalanced feature subvector sizes, as opposed to our current
approach of using equally split feature subvectors.

Moreover, the identification of unknown confounding fac-
tors will be scrutinized with further investigations on causal
discovery algorithms. Currently, we assume to know the
spuriously correlated factors and even their ground truth in
the used datasets. The avoidance of shortcut learning will be
more challenging if we know the spuriously correlated factors
but don’t have their ground truth (hidden or lost metadata like
scanner type, acquisition site, and even sex and age) or if not
all spuriously correlated factors have been identified.

Generally, in our study, we focused on basic deep learn-
ing architectures, especially due to limited computational
capacity, in order to demonstrate enhanced performance
and improved robustness. Consequently, we expect that our
results can be further optimized using more advanced and
sophisticated architectures, more data, and more computation
power.

VII. CONCLUSION
In conclusion, we proposed and evaluated a framework,
called Mutual Information Minimization Model (MIMM),
which allows to minimize spurious correlation learned by DL
models from non-medical benchmark and medical databases.
These correlations can lead to incorrect predictions on coun-
terfactuals or in new environments, such as when the model
is applied to out-of-distribution data. By separating the fea-
tures used for the primary task prediction from those of the
spuriously correlated factor, MIMM learns causal relation-
ships, which results in more precise and trustworthy pre-
dictions. Our extensive experiments demonstrate the effec-
tiveness of this approach, making it a promising approach
to prevent shortcut learning in real-world medical imaging
analysis.

APPENDIX
The supplemental graphs in Fig. 14 show the behavior of
the estimated MI when training a randomly initialized MINE
model with the feature vectors from the trained feature
encoders for all experiments.
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